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The '*C nmr spectra of some 4-hydroxy-2H-1,2-benzothiazine 1,1-dioxides I have been recorded and
analyzed. Spectroscopic assignments were made on the basis of chemical shift theory, APT and fully coupled
3C nmr spectra. Spectral data support the enolic structure of these compounds.
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Introduction.

In previous work [1,2] we studied the synthesis and
properties of 4-hydroxy-2H-1,2-benzothiazine 1,1-dioxides
of general formula I as well as their ir and 'H nmr spectra.
Although in recent years some compounds of this family
have acquired a great deal of importance for their strong
antiinflammatory activity, no systematic *C nmr studies
have been published. We report the C nmr spectra of
compounds I (Table 1) with particular attention to rela-
tionships between structure and spectroscopic behaviour.

Results and Discussion.

Chemical shift data are reported in Table 2. The **C
nmr data are in accord with the proposed enolic structure
{1,2]: i) No signal corresponding to a keto group was ob-

served; ii) APT spectra showed two signals at ca. 155 and
105 ppm with the same phase as the quaternary carbons of
the benzo ring (C~1 and C-6) (see below) which were as-
signed to C-7 and C-8 in agreement with literature data
for enolic and ethylenic carbons [3,4]. In 'H-coupled spec-
tra (Figure 1), C-7 exhibited a long-range coupling (J ca. 3
Hz) which could be attributed to coupling from the hy-
droxyl proton.

The benzenoid carbons in decoupled spectra appear
with chemical shifts between 138 and 121 ppm. The peaks
at ca. 137 and 129 ppm with singlet fine structure [5] were
identified by APT as the quaternary carbons. They were
assigned to C-1 and C-6, respectively, based on substitu-
ent effects. The two pairs of remaining benzenoid carbons
(C-3,4 and C-2,5) appeared in the fully coupled spectra

Figure 1. The 13C nmr coupled spectrum of compound 32.
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(Figure 1) with doublet fine structure (}J¢g ca. 166 Hz). In
practice, such carbons should exhibit multiplet hyperfine
structure [5]. However, both pairs of *C nuclei showed
substantially dissimilar long-range coupling. As Figure 1
clearly depicts the two doublet components of the two sig-
nals at ca. 132 ppm leading to distinct sharp doublets (Jcy
ca. 7 Hz). In contrast, those of signals at ca. 121 and 126
ppm, exhibited a pattern consisting of many lines. By
analogy with the findings of Giinther et al. for symmetri-
cally ortho disubstituted benzenes [6,7] and of Whipple for
Piroxicam [8] the 132 ppm signals were assigned to C-3,4
and the latter two to C-2,5.

The acid 1, exhibited a carboxyl carbon resonance
(171.4 ppm) at the same frequency of aromatic acid [9,10].
Formation of the esters produce a 2.6-4.4 ppm upfield
shift. This shielding, which is not so large as that observed
for benzoic esters [3,4], is similar to that reported for
methyl o-hydroxybenzoate [9]. The chemical shift changes
are also consistent with the proposed enolic structure, sta-
bilized by intramolecular hydrogen bond. In the propyl
and tbutyl esters (compounds 4 and 3), the carbonyl car-
bons are slightly shielded relative to the other esters. On
the basis of the -y effects, the upfield shift may be attribu-
ted to steric interactions, since one of the i-propyl (and two
of the #butyl) methyl groups must be gauche.
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In benzothiazine carboxamides, the amino group exerts
little effect on the carbonyl shielding based on comparison
of data for the acid 1 and the carboxamide 6: the carbonyl
carbons resonating at 171.48 and 171.80 ppm, respective-
ly. No geminal C-N-H coupling was observed for com-
pounds 6 and 13. Carbonyl carbons of the remaining
amides (compounds 7-12) show multiplet hyperfine struc-
ture which could be attributed to long-range coupling in-
teractions.

In N,N-diethylcarboxamide 9, the partial double bond
character of the amide CO-N bond [11], which arises from
the contribution of a polar resonance structure B along
with the normal covalent structure A (Scheme 1, R = R’
= C,H,), would lead to the nonequivalence of the nitrogen
substituents [12]. However, only one resonance for CH;
and CH, were observed [13]. These observations can be ex-
plained if less double bond character is assumed in the
amide bond, which is clearly attributable to competitive
delocalization (cross conjugation) due to the contribution
of an ionic resonance structure C. This observation fur-
ther supports the proposed enolic structure and is in
agreement with the ir specira of these compounds [14].

In the nitrile 14 and in its 2-methyl derivative 15, the
molecular geometry precludes the stabilization through
intramolecular hydrogen bond. However, **C nmr spectra
of these compounds clearly show the general enolic struc-
ture of benzothiazine esters and amides [20].

EXPERIMENTAL

All melting points are uncorrected and were taken on a Biichi
capillary melting point apparatus. The ir spectra were recorded
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on a Beckman 180A spectrometer. Samples were run as potas-
sium bromide pellets. The '*C nmr spectra were recorded at 20
MHz on a Varian FT-80A spectrometer. The spectra were re-
corded at normal probe temperature (30°) using a decoupling
power of 6W, pulse angles of 45°, a spectral width of 5000 Hz, an
8K data table, a 2s pulse repetition rate and ca. 0.7 Hz of line
broadening due to exponential weighting of the free induction
decay (FID). The 'H nmr spectra were recorded on a Bruker
AW-80 spectrometer. The presence of exchangeable protons was
confirmed by use of deuterium oxide. Chemical shifts are quoted
in ppm downfield from TMS. Signals are quoted as: S (singlet), D
(doublet), T (triplet), Q (quartet)) M (multiplet) and bs (broad
signal).

Literature procedures were followed in the preparation of com-

pounds 1-5 [1], 6-8, 10, 11 [2] and 13 {21].

3-Oxo-1,2-benzoisothiazoline-2{ N, N-diethyl)acetamide 1,1-Diox-
ide.

A mixture of 0.12 mole of benzoisothiazolin-3-one 1,1-dioxide
sodium salt, 0.08 mole of N,N-diethyl-2-chloroacetamide and 15
ml of N,N-dimethylformamide was heated at 120° for 6 hours.
The reaction mixture was poured into ice-water and the resulting
solid was filtered, washed with water, dried and recrystallized
from ethanol (70% yield), mp 127°; ir: » 1750 (C=0), 1690
(C=0), 1345 (S0.) and 1185 cm™* (SO,); 'H nmr (deuteriochloro-
form): 6 8.10-7.60 (M, 4, aromatics), 4.45 (S, 2, CH,-C0), 3.60-3.20
(M, 4, N-CH,-C), 1.30 (T, 3, CH,) and 1.15 (T, 3, CH,).

Anal. Caled. for C,,H (N,0,S: C, 52.70; H, 5.40; N, 9.46; S,
10.81. Found: C, 52.80; H, 5.53; N, 9.38; S, 10.70.

4-Hydroxy-N,N-diethyl-2H-1,2-benzothiazine-3-carboxamide 1,1-
Dioxide (9).

A solution of sodium isopropoxide prepared from 0.23 g of
sodium (0.01 g-atom) in 5 ml of absolute 2-propanol was refluxed
in an oil bath (140°) and 0.740 g (0.0025 mole) of 3-0x0-1,2-benzo-
isothiazoline-2{V,N-diethyl)acetamide 1,1-dioxide was added all
at once as the powder. After 20 minutes the orange slurry was
poured into ice-concentrated hydrochloric acid. The solid was fil-
tered off, washed with water, dried and recrystallized from etha-
nol-water (65% yield), mp 125°; ir: v 3400-2600 (OH), 3180 (NH),
1630 (C=0), 1600 (C=C), 1580 (C=C), 1320 (SO,) and 1180 cm*
(50,); 'H nmr (deuteriochloroform): 6 14.30 (s, 1, OH), 8.00-7.50
(M, 4, aromatics), 6.30 (bs, 1, SO,NH), 3.55 (Q, 4, CH,) and 1.25
(T, 6, CH,).

Anal. Caled. for C,H,\N,0,S: C, 52.70; H, 5.40; N, 9.46; S,
10.81. Found: C, 52.48; H, 5.65; N, 9.58; S, 10.98.

3-0Oxo0-1,2-benzoisothiazoline-2-acetonitrile 1,1-Dioxide.

The synthesis was carried out in the same manner as for 3-oxo-
1,2-benzoisothiazoline-2-(N, N-diethyl)acetamide 1,1-dioxide, but
using chloroacetonitrile (0.08 mole) (80% yield), mp 140° (etha-
nol); ir: ¥ 2900 (CH), 2230 (CN), 1740 (C=0), 1330 (SO,) and 1180
cm™ (S80,); 'H nmr (deuteriochloroform): § 8.40-7.90 (M, 4, aro-
matics) and 4.30 (S, 2, CH,).

Anal. Caled. for CHN,0,S: C, 48.64; H, 2.70; N, 12.71; S,
14.41. Found: C, 48.48; H, 2.97; N, 12.59; S, 14.30.

3-Cyano-4-hydroxy-2H-1,2-benzothiazine 1,1-Dioxide (14).

The synthesis was performed in the same manner as for com-
pound 9, but using a solution of 0.46 g {0.02 g-atom) of sodium in
6 ml of absolute ethanol and 1.11 g (0.005 mole) of 3-0xo0-1,2-ben-
zoisothiazoline-2-acetonitrile 1,1-dioxide. After heating for 45
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minutes the mixture was poured into ice-hydrochloric acid from
which 14 slowly crystallized. The compound was purified by dis-
solving the crude product in dilute sodium hydroxide and filtered
to eliminate insoluble impurities. The solution was extracted with
methylene chloride (2 ml). The aqueous alkaline layer yielded,
upon acidification with 10% hydrochloric acid (ice bath) a solid
which was filtered, washed with water and dried affording pure
14 (40% yield), mp 171° dec; ir: 3400-3200 (OH), 3170 (NH), 2240
(CN), 1600 (C=C), 1325 (S0O,) and 1180 cm-* (SO,); *H nmr (ace-
tone-de): 6 8.40 (bs, 2, exchangeable, NH and OH) and 8.20-7.60
(M, 4, aromatics).

Anal. Caled. for C;HN,0,S: C, 48.64; H, 2.70; N, 12.71; S,
14.41. Found: C, 48.63; H, 2.82; N, 12.56; S, 14.33.

4-Hydroxy-2-methyl-N-isopropyl-2H-1,2-benzothiazine-3-carbox-
amide 1,1-Dioxide (12).

Compound 8(0.001 mole) was added to a solution of 0.24 ml of
methyl iodide, 4 ml of ethanol and 1.2 ml of 1N sodium hydrox-
ide. After 24 hours at room temperature the reaction mixture was
concentrated to half of its volume, and treated with 5 ml of ice
water. The resulting solid was filtered, dried and recrystallized
from methanol, affording 12 (60% yield), mp 183°; ir: » 3500-
2500 (OH), 3340 (NH), 1620 (C=0), 1600 (C=C), 1340 (SO,) and
1180 cm™* (SO,); 'H nmr (deuteriochloroform): 6 13.65 (S, 1, ex-
changeable, OH), 8.05-7.40 (M, 4, aromatics), 6.60 (D, 1, ex-
changeable, NH), 4.15 (M, 1, CH), 2.80 (S, 3, N-CH;) and 1.20 (D,
6, CH,).

Anal. Caled. for C,,HN,0,S: C, 52.70; H, 5.40; N, 9.46; S,
10.81. Found: C, 52.58; H, 5.60; N, 9.40; S, 10.66.

3-Cyano-4-hydroxy-2-methyl-2H-1,2-benzothiazine
15).

This compound was prepared as was described for compound
12. The crude product showed two spots by tlc. In order to obtain
pure 13, the solid was extracted with chloroform (2 x 2 ml). The
chloroform-insoluble residue was identified as pure 15 (40%
yield), mp 95°; ir: » 3350-3200 (OH), 2230 (CN), 1600 (C=C),
1320 (S0,) and 1175 cm™* (SO,); 'H nmr (DMSO-d¢): 6 8.40-7.50
(M, 5, 1 H exchangeable, aromatics + OH) and 2.95 (S, 3, CH,).

Anal. Caled. for C, H,N,0,S: C, 50.84; H, 3.39; N, 11.86; S,
13.55. Found: C, 50.98; H, 3.20; N, 11.42; S, 13.70.
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